Metric Entropy and Ordinary Differential Equations

Robert Kaufman

Department of Mathematics, University of Illinois, Urbana, Illinois 61801

Communicated by G. G. Lorentz

Received May 8, 1979

1

Let C_1 be the set of vector fields $\Phi = (\varphi_1, \varphi_2)$ in the plane, each of whose components fulfills the boundedness conditions

$$|\varphi_i| \leq 1, \qquad |\varphi_i(z_1) - \varphi_i(z_2)| \leq |z_i - z_2|.$$

To each vector field Φ is associated a family of mappings (a flow) F_t :

 $F_0(z) = z, \qquad \frac{\partial}{\partial t} F_t(z) = \Phi(F_t(z)), \qquad -\infty < t < \infty.$

We denote by S_1 the set of all mappings F_1 , realized in this way from fields Φ in C_1 , and by $S_1(\delta)$ the set of all mappings obtained under the further condition $\varphi_1 \ge \delta > 0$. In the following statement $N_{\epsilon}(S)$ is the number of sets required to cover a set of functions S, each set having diameter $<\varepsilon$ in the uniform memtric on the square $Q: 0 \le x \le 1, 0 \le y \le 1$.

THEOREM.
$$N_{\epsilon}(S_1) \ge \exp c_1 \varepsilon^{-2}, \ 0 < \varepsilon < 1,$$

 $N_{\epsilon}(S_1(\delta)) \le \exp c_2(\delta) \varepsilon^{-4/3}, \qquad 0 < \varepsilon < 1.$

2

The lower bound is very elementary and is included for completeness. Let $g(z) = (1 - |z|^2)^+$ and let $z_1, ..., z_N$ be points in Q, with $|z_i - z_j| \ge \varepsilon$ when $i \ne j$. This can be done so that $N \ge c\varepsilon^{-2}$. (From this point onward we use c to denote positive constants.) Now we set $\varphi_2 = 0$, $\varphi_1 = \Sigma \pm \varepsilon g(\varepsilon^{-1}z - \varepsilon^{-1}z_i)$. Each center z_i moves left or right at least $c\varepsilon$ up to time y = 1, according to

the choice of \pm : we note that φ_1 never changes sign along any orbit $F_i(z)$. This leads to the lower bound $\exp c_1 \varepsilon^{-2}$.

3

In obtaining the upper bound we make several reductions, but these have clearly no effect on the generality. First we suppose that φ_1 and φ_2 are of class $C^1(R^2)$ and then we suppose that $\varphi_1 = 1$ and $\varphi_2 = 0$ outside the large square $-2 \le x \le 3$, $-2 \le y \le 3$. (The second adjustment may require an increase in the Lipschitz constants.) Each mapping F_t is differentiable and its Jacobian (or differential) is a matrix J(t, z). The entries of J(t, z) for $0 \le t \le 1$ are uniformly bounded for all Φ in C_1 . Moreover J(t, z) depends differentiably on t, according to the equation of variation (compare [1, p, 96])

$$(\partial/\partial t) J(t, z) = A(F_t(z)) \cdot J(t, z)$$

with

 $A_{ij}(z) = \partial \boldsymbol{\Phi}_i / \partial x_j \qquad (x_1 = x, \, x_2 = y).$

From the identity

$$J(1, F_s(z)) \cdot J(s, z) = J(s+1, z)$$

or

$$J(1, F_s(z)) = J(s + 1, z) J(s, z)^{-1}$$

we see that

$$\left|\frac{\partial}{\partial t}J(1,F_t(z))\right| \leq c, \quad \text{at} \quad t=0.$$

It should be noted that the operator $(\partial/\partial t)f(F_t(z))$ at t = 0 equals L(f), and $L = \varphi_1(\partial/\partial x) + \varphi_2(\partial/\partial y)$. Our inequality can be stated as follows for each component u of $F_1(z)$, and each operator $D = \partial/\partial x$ or $\partial/\partial y |L(Du)| \leq c$, where L must be defined using the flow F_t . Now, formally, $LDu - DLu = g_1(x, y) u_x + g_2(x, y) u_y$, with $|g_1| + |g_2| \leq c$, so hat Lu satisfies a uniform Lipschitz condition in the plane. (The proof of the identity for LD - DL proceeds by a smoothing of Φ so that u is C^2 and all derivatives have their usual interpretation.)

Let $0 < \varepsilon < 1$ and let C_1 be devided into sets B_{ε} of diameter $\varepsilon^{2/3}$ in the uniform metric of R^2 (or, what is the same, on the square $-2 \le x \le 3$.

 $-2 \le y \le 3$). The number of sets necessary here is $\exp c\varepsilon^{-4/3}$ (by [2, p. 153]). We choose one vector field ψ_1, ψ_2 from some B_r and try to estimate the functions u for vector fields Φ in B_r ; $|\varphi_1 - \psi_1| < \varepsilon^{2/3}$, $|\varphi_2 - \psi_2| < \varepsilon^{2/3}$. Henceforth $L = \psi_1(\partial/\partial x) + \psi_2(\partial/\partial y)$, and $L(\varphi)$ is the operator with φ_1, φ_2 .

We proved before that

$$|(L_{\omega}u)(z_{1}) - (L_{\omega}u)(z_{2})| \leq c |z_{1} - z_{2}|,$$

whence $|(L_{\omega}u)(z_1) - (Lu)(z_2)| \leq c |z_1 - z_2| + c\varepsilon^{2/3}$. We map the half-plane $t \geq 0, -\infty < y < \infty$ to the half-plane $x \geq 0$ by the formula $H(t, y) = F_t(0, y)$. The rectangle $R: 0 \leq t \leq \delta^{-1}$, $|y| \leq 1 + 2\delta^{-1}$ covers Q, and t, y are coordinates of class C^1 ; the partials of t, y and of the inverse transformation are bounded by a function δ alone. Henceforth we write u(t, y) in place of u(H(t, y)), observing that $\partial/\partial t = L$.

The functions u(t, y) are divided into subsets of diameter ε in the uniform metric over the set composed of lines $t = m\varepsilon^{1/3}$, or rather the segments of these lines contained in R; the number of sets needed is $\exp c\varepsilon^{-4/3}$ by [2, Chap. 10] and elementary properties of the uniform metric.

Suppose now that $m\varepsilon^{1/3} < t < (m+1)\varepsilon^{1/3}$ and that t has the special form

$$m\varepsilon^{1/3} + \left(\sum_{j=1}^{N} a_j 2^{-j}\right)\varepsilon^{1/3}, \quad a_j = 0 \text{ or } 1.$$

We write $t_0 = m\varepsilon^{1/3}$, $t_j = m\varepsilon^{1/3} + (\sum_{j=1}^{j} a_j 2^{-1})\varepsilon^{1/3}$ and use finite differences in the formula

$$u(t_N, y) = u(t_0, y) + \sum_{j=1}^{N} u(t_j, y) - u(t_{j-1}, y).$$

To represent all functions $u(t_N, y)$ we use $\langle c\varepsilon^{-1/3} 2^j$ differences $u(t_j, y) - u(t_{j_1}, y)$. We are going to find the metrical properties of these differences as functions of y.

By the mean-value theorem

$$u(t + h, y + k) - u(t + h, y) - u(t, y + k) + u(t, y)$$

= $h[u_t(t + \theta h, y + k) - u_t(t + \theta h, y)], \quad 0 < \theta < 1,$

whence the symmetric difference is at most $c |h| |k| + c |h| \varepsilon^{2/3}$. We suppose that $h = 2^{-j} \varepsilon^{1/3}$ (j = 1, 2, 3,...); if $k = 2^j j^{-2} \varepsilon^{2/3}$ the estimate for the symmetric difference is less than $cj^{-2}\varepsilon + c 2^{-j}\varepsilon \leqslant cj^{-2}\varepsilon$. Thus each function u(t + h, y) - u(t, y) varies by at most $cj^{-2}\varepsilon$ when y varies on an interval of length $2^j j^{-2} \varepsilon^{2/3}$; clearly $|u(t + h, y) - u(t, y)| \leqslant c |h|$. By the procedure already cited [2], we can cover the set of all such functions by sets of diameter $cj^{-2}\varepsilon$, using no more than $\exp cj^2 2^{-j}\varepsilon^{-2/3} \exp c$ sets. As explained above, this number must be raised to the power $C 2^{j}\varepsilon^{-1/3}$ yielding $\exp c 2^{j}\varepsilon^{-1/3} \exp cj^{2}\varepsilon^{-1}$. This type of estimation is continued until $h = 2^{-j}\varepsilon^{1/3} < \varepsilon$, or $2^{-j} < \varepsilon^{2/3}$, so the distance between the lines, on which *u* is estimated, is at most ε . Thus $2^{j} \leq 2\varepsilon^{-2/3}$, so that multiplication of the estimates for these numbers *j* yields $< \exp c\varepsilon^{-4/3}$ sets. Because $\sum j^{-2}$ converges we obtain a covering by sets of diameter $c\varepsilon$.

4

The upper bound is somewhat surprising, in as much as F_1 need not belong to C^r for any r > 1. (When 1 < r < 2, C^r is the class of function with derivatives in the Holder-class of exponent r - 1.) This, however, is not the main obstable to improving the exponent 4/3; if we study fields in which $\varphi_2 = 0$, $\varphi_1 \ge \delta > 0$, we can obtain any exponent > 1, by the interpolation process used above.

It is natural to look for co-ordinates u, v of class C^2 , in which $\dot{v} = 0$, that is $\varphi_1(x, y) v_x + \varphi_2(x, y) v_y = 0$. This is a first-order partial differential equation, to which we must add $\nabla v \neq 0$. In contrast to the behavior of ordinary differential equations, solutions v are generally no smoother than Φ . To illustrate this we take the simplest example: $\varphi_1 \equiv 1$, $\varphi_2 = \varphi_2(y)$. We suppose that $\varphi_2(y) = 0$ for $y \leq 0$ and $\varphi_2 \in C^1(-\infty, \infty)$, while φ'_2 increases on (0, 1). Because $v_x = 0$ for $v \leq 0$, $v_y(0, y) = a \neq 0$. Proceeding formally from the relation $v_x + \varphi_2(y) v_y = 0$, we obtain $(v_y)_x + \varphi'_2(y) v_y + \varphi_2(y) v_{yy} = 0$. This has to be interpreted as a derivative along the trajectories of the system $\dot{x} = 1$, $\dot{y} = \varphi_2(y)$, as in Section 3, and can be justified if we first treat $(v_y)_y$ and v_{yy} as distributions, or generalized derivatives, [3, p. 49]. For economy in writing, we set $\psi = v_y$, so $\psi(0, y) = a \neq 0$; we assume as we can, that a > 0. Let (x(t), y(t)) be a solution of the differential system, with initial position x(0) = 0, $y(t) = \overline{y} > 0$. If \overline{y} is sufficiently small, then $\overline{y} \leq y(t) > y(t) \leq y(t) > y(t) > y(t) > y(t) > y(t) > y(t) =$ $2\bar{v} \leq 1$ over $0 \leq t \leq 1$, because $\varphi_2(y) = o(y)$ near y = 0. Along the solution (x(t), y(t)), we have $\dot{\psi} = -\varphi_2'(y) \psi \leq -\varphi_2'(\tilde{y}) \psi$, so that $\psi(x(1), y(1)) \leq \psi(0, \tilde{y})$ $\exp -\varphi'_{2}(\bar{v})$. Both the initial point $(0, \bar{v})$ and the point (1, v(1)) have distance at most $2\overline{v}$ from the x-axis, on which $\psi = a$. The modulus of continuity of ψ , in the square $0 \le x \le 1$, $0 \le y \le 1$, admits a lower bound $w(\bar{y}) \ge c\varphi'_2(\bar{y})$, and this means that v_v is no smoother than φ'_2 . In particular, when $\varphi_2(y) = y^2$, for $y \ge 0$, v cannot be of class C^2 .

The inequality $N_{\epsilon}(S_1(\delta)) \ge \exp c_3(\delta) \varepsilon^{-1}$ is not difficult; we omit the proof because we do not know the best exponent.

References

- 1. P. HARTMAN, "Ordinry Differential Equations," Wiley, New York, 1964.
- 2. G. G. LORENTZ, "Approximation of Functions," Holt, Rinehart & Winston, New York, 1966.
- 3. K. YOSIDA, "Functional Analysis," Springer--Verlag, Berlin, 1965.