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Let C, be the set of vector fields @ = (¢,, ¢,) in the plane, each of whose
components fulfills the boundedness conditions

lo; ] < 1, [oiz,) —0dz,)l <z, — z,].

To each vector field @ is associated a family of mappings (a flow) F,:
o
Fy(z)=1z, EF,(Z):d)(F,(z)), —00 <t < 0.

We denote by S, the set of all mappings F,, realized in this way from fields
@ in C,, and by §,(d) the set of all mappings obtained under the further
condition ¢, 2> d > 0. In the following statement N (S) is the number of sets
required to cover a set of functions S, each set having diameter <& in the
uniform memtric on the square Q: 0 < x < 1,0 y < L.

THEOREM. N_(S,)>expc,e %, 0<e< 1,

N (S,0))<expec,(§)e ¥, 0<e<l.

2

The lower bound is very elementary and is included for completeness. Let
g(z)=(1—1z/*)" and let z,,..,zy be points in Q, with |z; — z;|>¢ when
i # j. This can be done so that N > ce 2. (From this point onward we use ¢
to denote positive constants.) Now we set 9, =0, ¢, =X + egle 'z —¢ 7 'z,).
Each center z; moves left or right at least ce up to time y = [, according to
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the choice of +: we note that ¢, never changes sign along any orbit F (z).
This leads to the lower bound expc,s

3

In obtaining the upper bound we make several reductions, but these have
clearly no effect on the generality. First we suppose that ¢, and ¢ are of
class C'(R’) and then we suppose that ¢, = 1 and ¢, = 0 outside the large
square —2 < x <3, -2< <3 (The second adjustment may require an
increase in the Lipschitz constants.) Each mapping F, is differentiable and its
Jacobian (or differential) is a matrix J(t. z). The entries of J(t,z) for
0<r< 1 are uniformly bounded for all @ in C,. Moreover J(t, z) depends
differentiably on ¢, according to the equation of variation (compare |I.
p.96])

(@fot)J(t,z2) = A(F (z)) - J(1, 2)
with
Ay(z) = /ex; (X, =x,x,=))
From the identity

J(L,F(z)) - J(s.2) =J(s + 1, 2)
or

JILF(2))=J(s+ 1,z)J(s,z) .

we see that

é )
)ET[J(LF'(Z)) <, at =0,

It should be noted that the operator (¢/dt) f(F,(z)) at t =0 equals L(/), and
L =g (¢/ox) + ¢,(d/dy). Our inequality can be stated as follows for each
component u# of Fi(z), and each operator D =¢&/ox or ¢/dy |L(Du) < c.
where L must be defined using the flow F,. Now, formally, LDu — DLu =
gux, y)u,+ g,(x, y)u,, with | g,| + | g,1<c, so hat Lu satisfies a uniform
Lipschitz condition in the plane. (The proof of the identity for LD — DL
proceeds by a smoothing of @ so that u is C* and all derivatives have their
usual interpretation.)

Let 0 <eg< 1 and let C, be devided into sets B, of diameter ¢ in the
uniform metric of R? (or, what is the same, on the square —2 < x < 3.
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—2< 1< 3). The number of sets necessary here is expce™ ' (by |2,
p. 153]). We choose one vector field v,, v, from some B, and try to estimate
the functions u for vector fields @ in B,; |0, —w,| <&™", o, — w,| <&’
Henceforth L = y,(9/0x) + w,(¢/8y), and L(p) is the operator with ¢,, ¢,.

We proved before that
(L, u)(z,) = (L u)z,)| < clz, — z,l,

whence |(L,u)(z,) — (Lu)(z,)|<c|z, — z,] + ce”’. We map the half-plane
12 0. —00 < y < oo to the half-plane x > 0 by the formula H(t, v} = F (0. »).
The rectangle R:0<r<d ", |y|<1+26 "' covers Q, and ¢, y are co-
ordinates of class C'; the partials of ¢, y and of the inverse transformation
are bounded by a function § alone. Henceforth we write u(t, y) in place of
u(H(r. y)), observing that ¢/0r = L.

The functions u(t, y) are divided into subsets of diameter ¢ in the uniform
metric over the set composed of lines ¢ = me"?, or rather the segements of
these lines contained in R; the number of sets needed is expce” ¥* by |2,
Chap. 10} and elementary properties of the uniform metric.

Suppose now that me"* <t < (m + 1)€"? and that ¢ has the special form

N
me"? + (}_ a_,2“-’)5"'3, a;=0or L

We write t,=me"’, t;=me"> + (3 a;2 ') e"* and use finite differences in
the formula

N
u(ty, y)y=ulty. y)+ ,\_ ult;, y)—ult;_,, »).
1

To represent all functions u(ty, y) we use <ce” V' 2/ differences u(;, y) —
u(t;,. y). We are going to find the metrical properties of these differences as
functions of y.

By the mean-value theorem

ut+h, y+k)y—u(t+h, y)y—ult,y+k)y+ult, y)
=hluft+ 6h, y + k) —u,t + 6h, y), 0<b<1,

whence the symmetric difference is at most c | 4| |k| + ¢ |k|&”*. We suppose
that h =273 (j=1,2,3,.);if k= 2/j %% the estimate for the symmetric
difference is less than ¢/~ % +c2%e<¢i % Thus each function
u(t + h, y) — u(t, y) varies by at most ¢j ~*¢ when y varies on an interval of
length 2 %¥%; clearly |u(t+ k. y)~—u(t, y)|<c|hl. By the procedure
already cited [2]. we can cover the set of all such functions by sets of
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diameter ¢j “e. using no more than exp ¢j°2 ‘& "' exp ¢ sets. As explained
above, this number must be raised to the power C2%¢ " vyielding
expc2c "Yexpegie ', This type of estimation is continued until
h=2 "¢"" < e, 0or 277 < ¥, so the distance between the lines, on which u is
estimated, is at most ¢. Thus 2/ 2¢ ¥ so that multiplication of the
estimates for these numbers j yields <expce *' sets. Because Y °
converges we obtain a covering by sets of diameter ce.

4

The upper bound is somewhat surprising, in as much as F, need not
belong to C" for any r > 1. (When 1 < r < 2, C” is the class of function with
derivatives in the Holder-class of exponent r — 1.) This, however, is not the
main obstable to improving the exponent 4/3; if we study fields in which
©,=0, ¢, >0 >0, we can obtain any exponent > 1, by the interpolation
process used above.

It is natural to look for co-ordinates u. v of class C*, in which ¢ =0, that
is g (x.)e,+o,(x, y)e,=0. This is a first-order partial differential
equation. to which we must add Vo # 0. In contrast to the behavior of
ordinary differential equations, solutions ¢ are generally no smoother than @.
To illustrate this we take the simplest example: ¢, = 1. ¢, =@.(¥). We
suppose that @,( v) = 0 for y € 0 and ¢, € C'(~o0, ), while ¢} increases on
{0.1). Because v, = 0 for y <0, v(0, y) =a # 0. Proceeding formally from
the relation v, +¢,(y)v, =0, we obtain (r,), +@3(») v, +0,(y)v,, =0.
This has to be interpreted as a derivative along the trajectories of the system
X =1, =¢,(») as in Section 3, and can be justified if we first treat (v,),
and v, as distributions, or generalized derivatives, |3, p. 49]. For economy
in writing, we set y =v,. so y(0, y)=a+ 0; we assume as we can, that
a > 0. Let (x(¢), ¥(t)) be a solution of the differential system, with initial
position x{(0) =0, y(t)= 7> 0. If i is sufficiently small, then ¥ < p(t) <
2r <1 over 0 <t < 1, because ¢,(y) =o0(y) near y = 0. Along the solution
(x(1). »(1)). we have y = —4(¥) ¥ < —95(F)w. so that w(x(1), (1)) < y(0, ¥)
exp —@5%( 7). Both the initial point (0, 7') and the point (1, p(1)) have
distance at most 2¥ from the x-axis, on which v =a. The modulus of
continuity of w. in the square 0 < x < 1. 0 < y < 1, admits a lower bound
w( 7) 2 cp4( 7). and this means that v, is no smoother than ¢5. In particular.
when ¢,( )= »% for ¥ >0, v cannot be of class C2.

The inequality N (S,(5)) > expc,(d) e ' is not difficult; we omit the proof
because we do not know the best exponent.
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