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Let C I be the set of vector fields ep = (!PI' !pz) in the plane, each of whose
components fulfills the boundedness conditions

To each vector field ep is associated a family of mappings (a flow) F(:

-00 < t < 00.

We denote by S I the set of all mappings F p realized in this way from fields
ep in C I' and by S I (6) the set of all mappings obtained under the further
condition !PI ~ 6 > O. In the following statement N,(S) is the number of sets
required to cover a set of functions S, each set having diameter <t; in the
uniform memtric on the square Q: 0 ~ x ~ 1, 0 ~ y ~ 1.

O<e<1.

2

The lower bound is very elementary and is included for completeness. Let
g(z) = (1 -Izl z)+ and let Zl , ... , ZN be points in Q, with Iz; - zX;~~ e when
i *- j. This c~n be done so that N ~ ce - z. (From this point onward we use c
to denote positive constants.) Now we set !P2 = 0, !pj = E ± eg([;- IZ - {; lZJ

Each center z,. moves left or right at least ce up to time y = 1, according to
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the choice of 1:: we note that IfJ I never changes sign along any orbit F,(z).

This leads to the lower bound exp C I I: '

3

In obtaining the upper bound we make several reductions, but these have
clearly no effect on the generality. First we suppose that !PI and ({J, are of
class C(R 2) and then we suppose that IfJI = I and !P, = 0 outside the large
square 2 ~ x ~ 3, --2 ~ .I' ~ 3. (The second adjustment may require an
increase in the Lipschitz constants.) Each mapping F t is differentiable and its
Jacobian (or differential) is a matrix J(t, z). The entries of J(I, z) for
o~ 1~ I are uniformly bounded for all (/J in C I' Moreover J(I, z) depends
differentiably on I, according to the equation of variation (compare II.
p. 96 J)

(8/at)J(t, z) = A(F{(z)). J(I, z)

with

AJz) = a(/Jjex,

F rom the identity

(x I = x, X 2 = .1').

J(I, F,(z)), J(s, z) =J(s + I, z)

or

J(I,F,(z))=J(s+ l,z)J(s,z) I

we see that

at 1 = O.

It should be noted that the operator ((i/cl)!(Ft(z)) at 1 = 0 equals UJ), and
L = ({J1(C/8x) + ((J2(C/Cy). Our inequality can be stated as follows for each
component u of FI(z), and each operator D = c/ox or ajoy IL(Du)[ ~ c,
where L must be defined using the flow Fr' Now, formally, LDu - DLu =
gl(x, .1') Uc + g2(X, y) uy, with IgIl + [g21 ~ c, so hat Lu satisfies a uniform
Lipschitz condition in the plane. (The proof of the identity for LD - DL
proceeds by a smoothing of (/J so that u is C 2 and all derivatives have their
usual interpretation.)

Let 0 < € < I and let C I be devided into sets B,. of diameter C;2l in the
uniform metric of R 2 (or, what is the same, on the square -2 ~ x ~ 3,
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-2 < .I' <3). The number of sets necessary here is exp cC 4;3 (by 12,
p. 1531 ). We choose one vector field If/I' 1f/2 from some B,. and try to estimate
the functions U for vector fields rp in B,.; Irpj-If/II<£Z13, Irpz-lf/zl<{;2i3.
Henceforth L = If/JO/ax) + If/z(a/ay), and L(rp) is the operator with rp" rp2'

We proved before that

whence I(L"u)(ZI) - (Lu)(z2)1 <c IZI - z21 + ce2!3. We map the half-plane
I ~ O. -00 < y < 00 to the half-plane x ~ 0 by the formula H(I, y) = Ft(O, y).
The rectangle R: 0 <I <(5" I, Iy I<1 + 2(5 1 covers Q, and I, yare co­
ordinates of class C I; the partials of I, y and of the inverse transformation
are bounded by a function (5 alone. Henceforth we write U(I, y) in place of
U(H(I, Y», observing that 0/01 = L.

The functions U(I, y) are divided into subsets of diameter e in the uniform
metric over the set composed of lines t = m£I13, or rather the segements of
these lines contained in R; the number of sets needed is exp ce - 4/1 by 12.
Chap. 101 and elementary properties of the uniform metric.

Suppose now that me 1/3 < I < (m + 1) e 1/3 and that I has the special form

We write 10 = m£ 1/3, I j = m{; 1/3 + (L~ Q i 2 I) [; 1/3 and use finite differences in

the formula

,\

U(I,v, y) = u(to' y) +~ U(li , y) ~ U(lj_I' Y)·
1

To represent all functions u(t", y) we use <ce' 1/3 2j
differences u(tj' y)­

U(ljl , y). We are going to find the metrical properties of these differences as
functions of y.

By the mean-value theorem

U(t + h, Y + k) - U(I + h, y) - U(I, Y + k) +u(t, y)

= h[ut(t + Bh, y + k) - ut(t + Bh, y)], 0 <B < I,

whence the symmetric difference is at most c Ihllkl + c Ihl [;2/3. We suppose
that h = 2 -je l/3 (j = 1,2,3,... ); if k = 2'i- 2e 2/3 the estimate for the symmetric
difference is less than cj- 2[; + c 2,je <cj- 2L Thus each function
U(I + h, .1') - U(I, y) varies by at most cj- 2[; when y varies on an interval of
length 21 2

{;2/3; clearly Iu(t + h, y) - U(I, y)1 <c 1h I. By the procedure
already cited 121, we can cover the set of all such functions by sets of
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diameter cj ';:. using no more than exp (/ 2 'f: ',1 exp e sets. As explained
above. this number must be raised to the power C 2i e 1/3 yielding
exp c 2ie L ,1 exp ell: I. This type of estimation is continued until
h = 2 if;l! < c. or 2 '< e2n , so the distance between the lines. on which Ii is
estimated. is at most I;. Thus 2; ~ 2e 2). so that multiplication of the
estimates for these numbers j yields <exp cc 4/1 sets. Because D :
converges we obtain a covering by sets of diameter ce.

4

The upper bound is somewhat surprising. in as much as F) need not
belong to C for any r > I. (When I < r < 2. C is the class of function with
derivatives in the Holder-class of exponent r - I.) This. however, is not the
main obstable to improving the exponent 4/3; if we study fields in which
!P, = O. !PI> 0> 0, we can obtain any exponent> I, by the interpolation
process used above.

It is natural to look for co-ordinates Ii. t' of class C', in which t; = 0, that
is !PI(X.Y)V,+!P2(X,y)V,=0. This is a first-order partial differential
equation. to which we must add V'v"* O. In contrast to the behavior of
ordinary differential equations, solutions v are generally no smoother than CP.
To illustrate this we take the simplest example: ([JI == L ([J2 = ([J,( y). We
suppose that ([Jl( y) = 0 for Y ~ 0 and ([J2 E C'( -co, co), while ([J; increases on
(0. I). Because v, = 0 for Y ~ 0, vJO. y) = a "* O. Proceeding formally from
the relation I', + ([J,(Y) v, = 0, we obtain (l~yL + ([J;(Y) vy + ([J,(Y) v ,y = O.
This has to be interpreted as a derivative along the trajectories of the system
."1' = L J; = IP,( y), as in Section 3, and can be justified if we first treat (v,,),
and 1',\ as distributions, or generalized derivatives, [3, p. 49]. For economy
in writing, we set //f = vI" so //f(0, y) = a "* 0; we assume as we can, that
a > O. Let (x(t), yet»~ be a solution of the differential system, with initial
position x(O) = 0, yet) = j' > O. If j' is sufficiently small, then ,1' ~ y(t) ~
2j' ~ lover 0 ~ t ~ I. because !p,L,,) = o( y) near y = O. Along the solution
(x(t) . .1'(1»). we have tit = -!pS(y) //f ~ "i'!S(.v)//f, so that //f(x(I), y(I») ~ If/(O, n
exp-<pSU'). 80th the initial point (O,.f) and the point (I, y( 1» have
distance at most 2.1' from the x-axis, on which //f = a. The modulus of
continuity of iJ/. in the square 0 ~ x ~ L 0 ~ y ~ I, admits a lower bound
w(J') >c!p;(.F), and this means that v" is no smoother than !pS. In particular,
when !P2(.l') = /, for y >0, v cannot be of class C2.

The inequality N,(SI(O» >exp cJ(o) c -I is not difficult; we omit the proof
because we do not know the best exponent.
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